One Laptop per Child

Laptop Power

September 18, 2008
Challenges

- Supplying power can be a large and difficult challenge in a deployment. Even in areas with a power grid.
- Lack of an established grid increased the difficulty significantly.
- No recipe solutions. Each site is unique.
How Much Power?

• 2 Primary modes
 − Charging battery
 − Not charging

• Charging battery
 − Max draw of 17 Watts

• Not charging
 − Less than 1 watt in sleep
 − Avg 4 – 7 watts while running w/ peaks up to 9W
Charging. How Long?

• Fastest. Laptop off
 − All power used to charge battery
 − 1 hour 46 Minutes

• Laptop on
 − Excess power used to charge power
 − About 2 and half hours
• Various solar panels at MAX output

• Laptop off
 - 5W 5 hours 15 minutes
 - 7W 3 hours 45 minutes
 - 10W 2 hours 40 minutes
Alternative Power Sources

• Solar
 − 5/7/10 Watt solutions

• Weza
 − Approx 30 Watt output
 − 2 Batteries in 2 hours
 − 7Ah LA battery. Will charge 2 batteries
 • Weza battery needs recharging after
Alternative Power Sources

• Crank
 - Still needs 2 hours of cranking.
 - Not really viable until Gen 2.

• Grass Roots
 - Cow power
 - Water, Wind, Pedal, Treadle
Multi-Battery Charger

- Charges 15 batteries in 2 hours
 - 300 Watt AC
 - 120 Watt DC option (10 – 28 Volt input)
 - 8 Batteries in 2 hours
 - Direct connection to 60W solar blanket(s)
Power Management

• Available today:
 − Hardware ready for suspend/resume
 − Current stable builds have support for sleep on lid close or button
 − About 4 hours of battery life during normal use
 − 14-16 hours of battery life in sleep mode
 − 8.2.x Has New “Extreme” power savings mode + additional power savings in sleep for non-mesh. (40+ hours of life in sleep)
Power Management

- Future:
 - Automatic management of suspend/resume
 - Aggressive CPU suspend
 - Suspend measurements are in the 2 watt range.
Helping OLPC

• Deployment Location Information
• Information we need
 – What is the climate and geography of deployment areas?
 • Names of closest large city.
 – What natural resources are available?
 – How many schools, how many kids, and how many kids per class?
Helping OLPC

• How many of those schools don't have a power grid or have unreliable power?
• Expected laptop usage. How often will you need to recharge the batteries?