
CANTOR’S DIAGONAL ARGUMENT:
PROOF AND PARADOX

Cantor’s diagonal method is elegant, powerful, and simple.  It has been the source of 
fundamental and fruitful theorems as well as devastating, and ultimately, fruitful paradoxes.  These 
proofs and paradoxes are almost always presented using an indirect argument.  They can be 
presented directly.  The direct approach, I believe, (1) is easier to understand, (2) unifies the proofs 
and paradoxes by exhibiting a single strategy, (3) shows Russell’s paradox to be the (obvious?) 
ultimate, set theoretic application of the method, and (4) is extendable to some of the semantic 
paradoxes.

For a first example consider all numbers between zero and one which can be represented by 
terminating decimals, e.g. 0.25, or infinite, repeating decimals, e.g. 0.123123123. . . (you may or 
may not know the name of such numbers).  It is convenient to use infinite representations in all 
cases, so we append an infinite number of zeros at the end of each terminating representation, 
making all of our decimals infinite, repeating.  Now suppose we list all such representations, i.e. all 
infinite, repeating decimals, with integer part zero.  It may not be obvious how to do this, but it is 
doable, in many different ways, one of which is

0.0000000000000. . .
0.9999999999999. . .
0.5000000000000. . .
0.3333333333333. . .
0.6666666666666. . .
0.2500000000000. . .
0.7500000000000. . .
0.2000000000000. . .
0.4000000000000. . .
0.6000000000000. . .
0.8000000000000. . .
0.1666666666666. . .
0.8333333333333. . .

.

.

.
(The bold digits are explained below.  The method used above to list all the decimals may not be 
obvious, but its discovery is, as they say, left to the reader.)

We now use Cantor’s method to diagonalize out of this list by constructing, digit by digit, a decimal 
representation that is not on the list:  if the i-th decimal digit in the i-th decimal representation is a 3, 
make the i-th digit in the construction a 7; and if the i-th decimal digit in the i-th decimal 
representation is not a 3, make it a 3 (giving the method the name ‘diagonalization’).  This produces

0.3337333333337. . .

As you might know all of the decimals in the list represent rational numbers.  The constructed 
decimal is clearly not on the list, differing from the i-th decimal at least in the i-th digit.  Does it 
represent a rational number?  As you might also know the decimals on the list represent all rational 
numbers (between zero and one), so the constructed decimal can not represent a rational.



A set which can be put into an infinite list is called countably infinite.  Thus, the rationals are 
countably infinite.  (We have only discussed numbers between zero and one, but decimal 
representation of all rationals can also be listed.)

In 1874 Cantor used his method to prove the very significant result that the reals are not 
countable.  What is needed is an argument that no infinite list of decimals can contain 
representations of all reals.  The stagey is to show that any such list must be incomplete.  But this is 
obvious, since any list can be diagonalized out of; i.e., given an arbitrary list of decimals (for 
simplicity, again, consider numbers between zero and one), the diagonally constructed decimal is 
not on the list, and therefore, represents a real not on the list:

Theorem  1 – Cantor (1874).  The set of reals is uncountable.

The diagonal method can be viewed in the following way.  Let P be a property, and let S be a 
collection of objects with property P, perhaps all such objects, perhaps not.  Additionally, let U be 
the set of all objects with property P.  Cantor’s method is to use S to systematically construct an 
object c which is not in S, called diagonalizing out of the set.  In our first example P is the property 
rational number, U is the set of all rational numbers, and S is U.  The conclusion we’re forced to 
here is that c must not be in U.

In the second example P is the property real number, U is the set of all reals, and S is an 
arbitrary infinite list of elements from U.  Since c is always in U, our conclusion is that S can never 
be complete.

These are the two uses of Cantor’s method for proving theorems.  For a frivolous, but 
instructive, example consider the one given by Douglas Hofstadter in Gödel, Escher, Bach, p. 404.  
Let P be the property ‘famous mathematician’, and let S consist of the following people who have 
property P:

De Morgan
Abel
Boole
Brouwer
Sierpinski
Weierstrass

Now diagonalize out of this list by moving back one letter in the alphabet.  If you believe the above 
list is complete, that it contains all famous mathematicians, you must conclude Cantor is not a 
famous mathematician.  If on the other hand you believe Cantor is a famous mathematician, you 
must conclude the list is not complete.

To review, we have the two possibilities:  (1) if S is U, then c can’t have P, or, contrapositively, 
(2) if the constructed object c has property P, then S couldn’t have been all of U.  As mentioned 
these two cases form the basis of the proofs using diagonalization.  A third possibility, that c has 
property P, and S isn’t all of U, is uninteresting.  A fourth case is an impossible one:  c has P and S 
is U.  This is paradox.  Looked at another way, if we diagonalize out of the universe, we’re in 
trouble. 

Before moving to paradox let’s look at one more theorem.  The motivation for the name 
‘diagonal method’ is obvious from the above examples, however, as mentioned, the essence of the 
method is the strategy of constructing an object which differs from each element of some given set 
of objects.  We now employ the diagonal method to prove Cantor’s arguably most significant 
theorem:  



Theorem  2 – Cantor’s Theorem (1891).  The power set of  a set is always of greater 
cardinality than the set itself.

Proof:  We show that no function from an arbitrary set S to its power set, 

€ 

℘(U ), has a range that is 
all of 

€ 

℘(U ).   nThat is, no such function can be onto, and, hernce, a set and its power set can never 
have the same cardinality.  

To that end let f be any function from S to 

€ 

℘(U ).  We now diagonalize out of the range of f.  
Construct a subset C of S, i.e. an element of 

€ 

℘(U ), which is not in the range of f as follows:  for 
any 

€ 

a∈ S  make C differ from f(a) with respect to the element a itself.  I.e. if 

€ 

a∈ f (a) , then don't 
put it in C; however, if 

€ 

a∉ f (a) , put it in C.  Symbolically,

€ 

C = a : a ∈ S and a ∉ f (a){ }.

Clearly C differs from each element in the range of f (with respect to at least one element).  Since f 
is arbitrary, we conclude there can be no function from S onto 

€ 

℘(U ).  Thus, every set has 
cardinality smaller than its power set.

This theorem was proved by Cantor in 1891 and led him in 1895 to what is now known as 
Cantor’s paradox:  if U is the universe of all sets, then every subset of U, being a set, is an element 
of 

€ 

℘(U ).  Thus, 

€ 

℘(U )⊂U , so (it would seem) the cardinality of 

€ 

℘(U ) cannot be greater than the 
cardinality of U.  But this contradicts Cantor’s theorem.  (For an interesting discussion of why 
Cantor did not see this and other set-theoretic paradoxes as negative (until Russell’s), but as 
positive results, see Dauben [1, pp. 242-247].)  This paradox was not published until 1932, but 
word of its discovery spread and reached Russell in 1901, whereupon he constructed his paradox.  
Russell’s paradox can be seen as the ultimate, set-theoretic application of Cantor's diagonal method:  
diagonalize out of the Universe!

Russell’s Paradox (1901).  Construct a set which differs from every set, including itself!  Let R 
be the set to be constructed.  Now, for any set S, how shall we make R differ from S?  With respect 
to what can we make R differ from S?  How about S itself?  If 

€ 

S ∈ S , we won’t put S in R.  On the 
other hand, if 

€ 

S ∉ S , we will put S in R.  Symbolically,

€ 

R = S : S ∉ S{ } .

Now R differs from each set (with respect to at least one element), including itself – paradox!  (How 
does R differ from R?  Well, if 

€ 

R ∈ R we didn’t put R in R, and if 

€ 

R ∉ R we put R in R.  Either 
way, R can't equal R .)

Russell [4, p. 362] states he was led to his paradox by applying Cantor’s proof to the 
universe of sets.  Perhaps he reasoned as above, or alternatively, as follows:  There must be a 
mapping from U onto 

€ 

℘(U ) – the identity map is one such (since every subset of U is a set.)  
Russell’s paradoxical set is then generated by applying the construction in Cantor’s theorem to this 
map.

The argument Cantor had used to produce an elegant and powerful theorem was modified 
slightly and used by Russell to produce an elegant and devastating paradox.  Cantor’s theorem had 
guaranteed an unlimited collection of sizes of infinity, giving good evidence that this new theory 
would be rich and fruitful. Russell’s paradox, because of its crushing blow to the new field and its 
intimate connection with efforts to shore up the foundations of mathematics, was a major force 
behind the flurry of activity in the foundations of mathematics in the first half of the twentieth 
century.  Much of the effort was directed toward rescuing set theory.  We quote Hilbert [2, p. 141]:  



“Whenever there is any hope of salvage, we will carefully investigate fruitful definitions and 
deductive methods.  We will nurse these, strengthen them, and make them useful.  No one shall 
drive us out of the paradise which Cantor has created for us.”

Russell’s paradox leads to the following argument. Given any set S, we can diagonalize out of 
it.  Construct an object which is not in S by creating a set which is different from each element of S.  
Of course if the elements of S are not sets, then any set will be different from these elements; but we 
can describe a method which will work regardless of the character of the elements of S.  Call the set 
to be constructed 

€ 

RS .  For each element s of S, determine whether or not 

€ 

s∈ s.  This will of course 
be false for any element which is not a set, as well as for many sets.  Now, we put s in 

€ 

RS  iff 

€ 

s∉ s.  
Symbolically,

€ 

RS = s : s∈ S and s ∉ s{ } . 

Then 

€ 

RS  differs from each element of S.  Since many sets (all? – see below) do not contain 
elements (sets) which are self-containing, 

€ 

RS  is often (always?) S itself.  (In most cases the diagonal 
method is used in a context requiring the diagonal element to be similar to the elements of the given 
set, in addition to being distinct from each of them, as in the first two theorems.  Here, however, the 
only requirement is to get out of the set.)  Thus, we can diagonalize out of any set; i.e. given any set, 
there is an object (set) which is not an element of that set.  In particular there can be no set which 
contains every set – any set can be diagonalized out of.  This is just Russell’s paradox.  We can 
therefore consider Russell’s paradox (as well as Cantor’s) as a reductio ad absurdum proof of

Theorem  3.  There is no universal set.

Since the specification

€ 

x : x is a set and x = x{ }

defines the contradictory universal set, such specifications had to be prohibited in the axiomatic 
reconstruction of set theory.  Furthermore, even if the universal set is disallowed, Russell’s 
argument still presents paradox, still diagonalizes out of the universe (if not out of the universal 
set).  The solution for most axiomatic set theories is, again, to prohibit the specification of Russell’s 
paradoxical set.  In fact these theories usually prohibit sets which contain themselves.  (Russell’s 
set is self-containing iff it isn’t!)  While an infinite set can be thought of as having “infinite 
breadth” (if all its elements could be named, the roster name of the set would be infinitely long), a 
self-containing set would have “infinite depth” (if  

€ 

S ∈ S , then S would have infinite nesting –  
  

€ 

S ∈ S ∈ S ∈…), as does a picture which depicts itself.  One might argue that while such pictures 
can be conceived of, they cannot be “realized.”  Similarly, most mathematicians in foundations do 
not believe such sets exist.  Consequently they prohibit self-containing sets.  Actually they prohibit, 
in general, infinite, descending 

€ 

∈ − chains (no set has infinite depth).

It might be helpful to see a non-mathematical analogy.  Russell produced an interesting 
variation of his paradox whose subject matter is not mathematics.  Consider properties (predicates), 
e.g. red, long, controversial, abstract, etc.  Some properties apply to physical objects (e.g. red and 
long), while others apply to abstractions such as ideas, concepts, or properties (e.g. controversial or 
abstract).  We want to diagonalize out of the collection of all properties, giving paradox. 

To that end define a new property, impredicable, meant to apply not to physical object but to 
the abstractions, properties.  And, of course, we want to define it in such a way that it is different 
from every property.  Just as we define the property red for a child by telling him or her which 



physical objects are and which are not red, we define the property impredicable by saying which 
properties are and which are not impredicable.  

Thus, given a particular property such as controversial, we make (the property) impredicable 
differ from (the property) controversial with respect to the property of being controversial.  Since 
there is nothing controversial about the property controversial, we include controversial as one of 
those properties which has the property of being impredicable; i.e. controversial is impredicable.  (I 
think you’ll also agree, before we finish, that impredicable is controversial.)  Hence, the two 
properties, impredicable and controversial, differ in (at least) the following way:  controversial has 
the first of these two properties but lacks the second.

For a second example consider the property abstract.  Since (the property) abstract it is itself 
abstract (all properties are abstract), we will say that it is not impredicable.  Hence, impredicable 
differs from abstract in that (the property) abstract is abstract, but abstract isn’t impredicable.

In general, then, a property is impredicable iff it isn’t self-descriptive.  Thus, impredicable 
differs from every property, including itself – paradox!  (It differs from itself in that it is 
impredicable iff it is not impredicable.)  

We can symbolize the definition of impredicable if we consider properties extensionally, i.e. if 
we identify the property with the collection of objects which have the given property.  Thus, we will 
identify the property impredicable with a certain set, viz. the set of all objects (properties) which are 
impredicable.  Then the statement 'controversial is impredicable’ can be translated as

controversial 

€ 

∈  impredicable,

and ‘abstract is not impredicable’ is translated as

abstract 

€ 

∉  impredicable.

Now, letting ‘V’ denote the collection of all properties, impredicable can be defined as follows:

impredicable = 

€ 

P : P ∈ V and P ∉ P{ }.

The analogy with Russell’s set-theoretic paradox is almost exact.

In 1908 Grelling published a very similar paradox which is concerned with adjectives (words) 
rather than properties.  Define the adjective ‘heterological’ to apply to an adjective iff the adjective 
does not apply to itself.  This is very similar to Russell’s definition, but the “extension” of the 
adjective ‘heterological’ is very different from the “extension” of the property impredicable.  For 
one thing their extensions contain different kinds of objects, words in one case and concepts in the 
other.  But there is a more subtle difference.  For example, the adjective  ‘polysyllabic’ is not 
heterological (since the word ‘polysyllabic’ is polysyllabic).  But the property  polysyllabic is 
impredicable (since the concept of being polysyllabic is not itself polysyllabic – concepts don't have 
syllables).  And this difference occurs precisely because the one applies to words and the other to 
concepts.

As was mentioned earlier, Russell’s variant on his paradox is not mathematical in nature; the 
same is true of Grelling’s.  They are among the so-called semantic paradoxes.  These semantic 
paradoxes did not have the direct impact on the foundations of mathematics of the set-theoretic 
paradoxes; however, they did play a crucial role in the subsequent analysis and development of 
foundations.  Fraenkel and Bar-Hillel [3, p. 12] state, “. . . in one of the most interesting 
developments in modern foundational research it became clear that the problem presented by the 



semantic antinomies (paradoxes) . . . served as the starting point for investigations of immense 
direct impact on modern mathematics.”  For general discussions of both semantic and set-theoretic 
paradoxes, see [3, pp. 1-18] and [1, pp. 481-518].

Let us leave paradox now and return to theorem.  A slight modification of the proof of the 
uncountability of the reals shows that the set of (single variable) number-theoretic functions is not 
countable.

Theorem  4.  The set 

€ 

F = f : f :N →N{ } is uncountable.

Proof:  As before we show that any list    

€ 

f1, f2, f 3,…  of elements of F is not complete (there is no 
function from N to F which is onto).  Think of a vertical list of functions, with the values of each 
function enumerated horizontally, as a doubly-infinite array (like a list of infinite decimals).  Now 
construct a function which is not on the list by changing the diagonal:  let

€ 

f (i) = fi(i) +1.

This function clearly differs from each function on the given list (for at lest one argument value).  
Thus, no list can be complete, and therefore, F is uncountable.  (In fact F is the same size as the 
reals.)

Starting with a close analog of the last theorem, we now consider a number of theorems 
concerning computable functions and computable lists.  I will use the term computable in an 
informal way and assume that associated with each computable function, or list, is an algorithm 
(also taken intuitively) which computes the function or generates the list.  Intuitively, an algorithm is 
a list of instructions which specifies (unambiguously) how to perform some task, e.g. finding the 
values of a particular function or generating a particular list.  We assume our algorithms are written 
in a particular language such as the informal language within which we do mathematics (English, or 
another natural language, supplemented by technical terms) or a formal language such as a 
computer language.  We also assume an algorithm can contain only a finite number of instructions.  
Thus, an algorithm is a finite, syntactic object:  a finite string of symbols from some (finite) 
alphabet.  Of course many algorithms may compute the same function or generate the same list.

The formal counterparts in recursion theory, and sometimes automata theory, will be indicated 
parenthetically.  That the set of recursive functions, the set of Turing-computable functions, and the 
set of functions calculable (in an ideal sense) by any general-purpose programing language are all 
the same set is a theorem of mathematics.  That this common set is precisely the set of computable 
functions is the universally accepted hypothesis (definition) known as the Church-Turing thesis.

Since an algorithm is a finite string of characters from a finite alphabet, the number of 
computable functions is countable.  It would seem that we can diagonalize out of this universe, 
while at the same time remaining within it!  This was a serious problem in the 1930’s.  Quoting 
Hartley Rogers from his classic book on recursion theory [5, p.11]:

It is evident that the diagonalization method has wide scope, for 
it is applicable to any case where the sets of instructions . . . can
be effectively (i.e., algorithmically) listed.  At first glance,
it is difficult to see how a formal characterization can avoid
such effective listing and still be useful.  The diagonal method
would appear to throw our whole search for a formal characterization
into doubt.  It suggests the possibility that no single formally
characterizable class of algorithmic functions can correspond



exactly to the informal notion of algorithmic function....
These are some of the considerations and difficulties, albeit vague 
and informal, that surround the problem of getting a satisfactory
characterization of algorithm and algorithmic function.  They had to
be faced by the mathematicians who first addressed themselves to that 
problem in the 1930’s, mathematicians who were stimulated in their
work by recent successes of formal logic and its methods.

Let us follow the resolution of the problem. The first result concerns a subset of the 
computable functions, viz. those which are computable using only bounded loops (the primitive 
recursive functions).  In a bounded-loop algorithm any loop must have a predetermined upper 
bound (determined before the loop is entered) on the number of times the loop will be executed.  As 
an example of an algorithm with an unbounded loop consider the following procedure to find the 
next prime after n:  starting with n+1, test each successive integer for primeness until one is found.  
Of course there is a bounded-loop algorithm which also calculates this function, since n!+1 can be 
used as a bound.  Note that bounded-loop algorithms must always halt.  One free-loop algorithm 
which may or may not always halt is the one which searches for the next twin-prime pair.

As mentioned earlier, the entire set of computable functions is countable.  Hence we won’t 
be proving that any subset of computable functions is uncountable.  Nevertheless, Cantor’s method 
is extremely useful, producing arguments which seem at first, like Russell’s, to be headed toward 
disaster.  We quote Rogers again, from page 31:  “It is not inaccurate to say that our theory is, in 
large part, a ‘theory of diagonalization’.”

Now consider a listing   

€ 

f1, f2, f 3,…  of bounded-loop computable (primitive recursive) 
functions.  The diagonal function

€ 

f (i) = fi(i) +1

is clearly not on the list, and hence, is not bounded-loop computable.  But is it (intuitively) 
computable?  It is if we can generate, in a computable way, the list   

€ 

f1, f2, f 3,…  (if the set is 
recursively enumerable):  to compute 

€ 

f (n)  merely generate 

€ 

fn , compute

€ 

fn (n), and add one.  To 
generate such a list, start listing the finite sequences of characters of the language in which the 
algorithms are written, by length, and alphabetically within each length.  As this is being done, throw 
out those which are not valid algorithms (of one numeric parameter and giving one numeric output) 
and those valid algorithms which have unbounded (free) loops.  We assume this can be done.  If 
the Church-Turing thesis is granted, the algorithms can be thought of as, say FORTRAN programs.  
And to make loops easier to check for boundedness, we can eliminate form the programming 
language all branching except that connected with DO-loops.  A program similar to a compiler 
could carry out these processes (the primitive recursive functions are recursively enumerable).  Each 
algorithm (considered as a specific sequence of characters) appears only once on the list but each 
function appears many times, i.e. the list   

€ 

f1, f2, f 3,…  contains many duplicates.  But the point is we 
have listed the bounded-loop computable   We have therefore proved

Theorem  5.  There are computable (recursive) functions which are not bounded-loop computable 
(primitive recursive).

Thus, we are able to diagonalize out of the set of bounded-loop computable functions while 
remaining within the domain of computable functions.  But why stop here?  Maybe we can 
diagonalize out of the entire set of computable functions, while at the same time remaining with that 
set, producing paradox!

To that end, assume   

€ 

g1, g2, g3,…is a listing of all computable functions.  Then the diagonal 



function

€ 

g(i) = gi(i) +1

is clearly not on the list.  This is the concern expressed by Rogers above.  But to produce paradox, 
to argue we have found a computable function which is not on the list of all computable functions, 
we must have that   

€ 

g1, g2, g3,…  is computably listable.  Thus to avoid paradox we must conclude

Theorem  6.  The set of algorithms which are defined for all  (halting Turing machines, recursive 
functions) is not computably listable (r.e.).

It could be objected that the above argument does not justify the conclusion of the theorem; 
that it is equally valid to conclude that the notion of computable is flawed in some way, similar to 
the conclusion derived from Russell’s paradox about Cantor’s naive conception of set.  However, if 
the theorem is stated in terms of recursive functions or Turing machines, and the Church-Turing 
thesis is accepted (implying that intuitively computable functions are recursive or Turing-
computable), the conclusion is justified (see below).  Notice we can also conclude from the above 
argument that there are functions which are not computable; g is one such.  Theorem 4 already tells 
us that “most” functions are not computable, but now we have a specific example.

From Theorem 6 a further conclusion can be drawn:  when generating a list of all 
algorithms, we cannot (in a computable way) eliminate those that fail to halt (or produce invalid 
output) for some input values.  (As any beginning programing student knows, it is not easy to tell if 
a program contains infinite loops.)  This is a statement of the recursive unsolvability of one form of 
the famous Halting Problem:

Theorem  7.  There is no computable procedure which can determine, for each algorithm, 
whether or not it will halt (with a valid output) for all input values.

This then is the solution to the problem mentioned by Rogers.  The concept “algorithm” 
can be defined in such a way that deciding whether a given (finite) syntactic object is or is not an 
algorithm is a computable (algorithmic) procedure.  But this can be done only by including non-
terminating algorithms, i.e., algorithms with calculate partial functions.  And then we cannot sort 
out, in a computable manner, the terminating algorithms (total functions) from the non-terminating 
ones (partial functions).

Since the partial functions can be computably listed, let us try to diagonalize out of this set. 
Let   

€ 

h1,h2,h3,…  be a computable listing of all partial, computable functions. Our first candidate for 
an “escape” function, 

€ 

h(n) = hn (n) +1, fails to be well-defined since 

€ 

hi(i) may not be defined for 
some i.  The attempted fix,

€ 

h(n) =
hn (n) +1, if hn (n) is defined

0,                otherwise
 
 
 

does produce a well-defined, partial function which is different from every computable, partial 
function.  However, we again avoid paradox since h is not computable, this time because the 
Diagonal Halting Problem is recursively insolvable:

Theorem 8.  Given a computable list of algorithms, there is no algorithm which will tell if the ith 
algorithm will halt for input i.

(As in the argument for Theorem 6, we have produced a function, in this case partial, which 



is not computable.)

Thus we have the well-defined set of total, computable functions for which Cantor’s 
argument does not produce paradox – the diagonal function is not computable since the set is not 
computably listable (r.e.); and the well-defined, computably listable (r.e.) set of partial, computable 
functions which also does not produce paradox – the diagonal function is again not computable 
since we can’t always decide, algorithmically, whether an algorithm will stop (the Diagonal Halting 
Problem is recursively unsolvable).

Summary

In Theorems 1 and 4 we considered arbitrary lists of particular sets of objects.  In each case 
we found an object in the set not on the list.  We thus concluded that no list of elements of the set 
can be complete.  Cantor’s theorem is similar but applies to any set (not just ones that can be 
listed), guaranteeing no largest cardinal.  And if the universe of sets is used, leaving us nowhere to 
go when we diagonalize, Russell’s paradox is produced.  Russell’s argument stimulated the 
development of axiomatic set theory, as well as foundational work in general.  His argument can be 
interpreted as a reduction ad absurdum proof of the nonexistence of his specific set, or (modified 
slightly) a direct proof that there is no universal set.  The modern generalization of this result is that 
there are no sets of “infinite depth” – no infinitely descending epsilon chains.

Theorem 5 is similar to Theorem 4, but the switch to computable functions produces a 
significant difference. There is no question about the countability (listability) of the given set.  But 
here, in order to stay within the given domain (computable functions) when diagonalizing, the list 
must be computable (the set must be r.e.).  That is, the diagonal function is guaranteed to be 
computable only if the list is computable.  In Theorem 5 the list (of bounded-loop computable 
functions) is computable, and therefore, we successfully diagonalize out of the set while remaining 
in the desired domain of computable functions, giving that there are computable functions which are 
not bounded-loop computable.

In Theorem 6 by trying to diagonalize, in a computable way, out of the set of all (total) 
computable functions (shades of Russell), we produce the initially surprising result (referred to by 
Rogers) that the set is not computably listed.  This argument also gives the unsolvability of one 
form of the Halting Problem.  In Theorem 8 we move to partial functions.  This list is computable,   
so the conclusion to the diagonal argument must change once again.  Since the functions are partial, 
the standard diagonal function is not well-defined.  And when we fix it up so that it is well-defined, 
we introduce another problem whose recursive solvability is open to question. We therefore 
conclude that the Diagonal Halting Problem is unsolvable.

As we have seen, the diagonal method created by Cantor has been tremendously fruitful, not 
only in its original context of set theory, but throughout foundations, including its development to 
create an entire new field, the important theoretical and applied subject of computability/recursion 
theory.  (The method also plays a crucial role in Gödel’s fundamental incompleteness theorems.)  
Hilbert [4, p. 139] recognized Cantor’s unique talents:  “This theory (set theory) is, I think, the 
finest product of mathematical genius and one of the supreme achievements of purely intellectual 
human activity.”
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