Educational Software: Difference between revisions

From OLPC
Jump to navigation Jump to search
(moved "Software to create Text Adventures" to "Programming for Kids")
Line 9: Line 9:
===Software to create Text Adventures===
===Software to create Text Adventures===


Also known as [http://en.wikipedia.org/wiki/Interactive_fiction Interactive Fiction]. MOOs are a bit more engaging but they need some sort of central server in which to create the world. A central server might not be available where these laptops will. See [[Talk:Educational_Software#MUSEs_or_MOOs discussion]].
Also known as [http://en.wikipedia.org/wiki/Interactive_fiction Interactive Fiction]. However, MOOs are a bit more engaging but they need some sort of central server in which to create "the world". A central server might not be available where these laptops will. See [[Talk:Educational_Software#MUSEs_or_MOOs discussion]].


In that discussion it is argued that a MUD environment wouldn't work because it would require a central server to install "the world". Couldn't this obstacle be surmounted by allowing the creation of "personal worlds" or houses, that one child can share and another child can access when both computers are within WiFi reach? It seems that this kind of application is exactly what the OLPC should be focusing on, consider:
In that discussion it is argued that a MOO environment wouldn't work because it would require a central server to install "the world". Couldn't this obstacle be surmounted by allowing the creation of "personal worlds" or houses, that one child can share and another child can access when both computers are within WiFi reach? It seems that this kind of application is exactly what the OLPC should be focusing on, consider:


http://anarch.ie.utoronto.ca/publications/mie2002-readingcourse.pdf
http://anarch.ie.utoronto.ca/publications/mie2002-readingcourse.pdf

Revision as of 17:53, 13 July 2006


Introduction

This page is intended to organize the thinking on software that could be used in some fasshion by the OLPC project. Please use the discussion tab to add your own suggestions.

Programming for Kids

Programming for Kids refers to the constructionist practice of teaching kids thinking skills and mathematical skills by using a programming language environment such as LOGO or Squeak.

Software to create Text Adventures

Also known as Interactive Fiction. However, MOOs are a bit more engaging but they need some sort of central server in which to create "the world". A central server might not be available where these laptops will. See Talk:Educational_Software#MUSEs_or_MOOs discussion.

In that discussion it is argued that a MOO environment wouldn't work because it would require a central server to install "the world". Couldn't this obstacle be surmounted by allowing the creation of "personal worlds" or houses, that one child can share and another child can access when both computers are within WiFi reach? It seems that this kind of application is exactly what the OLPC should be focusing on, consider:

http://anarch.ie.utoronto.ca/publications/mie2002-readingcourse.pdf

Constructivist Learning Using Simulation and Programming Environments
MIE2002H Readings in Industrial Engineering I
Calum Tsang
May 5th, 2004

The third, a multiplayer environment called MOOSE Crossing, touches 
on a previously minimized area of constructionism, that of social   
relation. Ego syntonicity has already been covered as a required    
characteristic, however, the social interaction and structure for   
these activities has not.                                           

Papert described the Latin samba school as a constructionist        
activity with the added benefit that a social environment was also  
present. MOOSE Crossing, a multiuser game similar to a Multi User   
Dungeon (MUD) is both programming exercise, creative writing outlet 
and social scene. Students are invited as an after school project   
to play and build in this virtual space, programming automated      
interactions and crafting textual descriptions of people and        
objects in this microworld. "Knowledge is not passed from teachers  
to students but is developed by everyone through their activities   
and interactions with one another" (Resnick et al. 1996b: 48).      

The environment is a social place, and there is a desire to share   
creations in it. Many aspects of real-life relation are present     
in this community context, and manifest themselves as part of       
creating projects or experiences in the virtual world. In one case, 
the authors noted the students built social capital by creating     
objects others liked. Also unique to MOOSE Crossing is its verbal   
aspect: While other projects highlighted so far have leaned towards 
mathematics and science, this environment encourages writing.       
Objects in the virtual world must be described, appealing to        
students who have strong verbal skills. The authors also suggest    
this as a way to link verbal skills to developing analytical        
abilities.                                                          

One can draw parallels with other constructionist activities:       
The students in MOOSE Crossing work on projects that are very       
personal, often driven by personal interests and meanings. At the   
same time, this is expanded into a social context that goes beyond  
the individual.

Software to Support Education

This refers to software that does not teach anything directly but is available to facilitate learning. Examples include wireless chat and dictionaries.

Unit Calculator

A calculator that takes into account the units of the numbers. Some tool to be able to make calculations like these.

Dictionary software

synonyms, antonyms, definitions, English/Spanish (or other language) translations, pronunciation

There are lots of dictionary programs available, defined file formats, and dictionaries. One of the formats is SDICT which is used by various client programs including various types of mobile phone. Because they have already done the work to make a small compressed format we should leverage that and use their dictionary files. Alexey Semenoff has a page discussing the work of the sdictionary project.

A Python client for Symbian S60 can be downloaded from this site. It shows how to read the sdict format (conv.py) and how the dictionary can be further compressed to use on a device like a mobile phone or OLPC (src/pydict.py).

In summary, Sdictionary is a dictionary that uses its own dictionary format. Unlike ptkdic or gtkdic, MySQL isn't needed; you can work with dictionary files directly. It uses Unicode, meaning that words and articles all are in UTF-8. There are two index levels, compression, and tools to convert from text files to .dct and vice versa.

Many dictionary databases are already available, some of them in target languages like Hindi, and Brazilian Portuguese. The fact that Python tools are available makes it easier for application and content developers to integrate this into their projects.

Software to enable Participatory Simulations

Participatory Simulations
http://ccl.northwestern.edu/ps/ps.shtml

Software to create System Dynamics models

Like predator/prey models, scarce resources, snow ball effect (reinforcing feedback), dynamics of drug addiction, growth of human populations, exponential spreading of deseases, conflict escalation, dynamic equilibrium. These are the current software implementations all of them are non-free software http://sysdyn.clexchange.org/links_software.html

Teaching Software

Teaching Software refers to applications whose primary goal is to deliver educational content. In the western world this is often very poorly implemented in CBT (Computer Based Training) modules or tedious drill and practice software. These approaches will not work in the OLPC environment. Drill and practice would demotivate the kids and CBT does not have the depth of information needed.

Ebook Reader

This is teaching software that takes the rich and detailed content of textbooks and encyclopedias into the OLPC. Discussion of eBook feature set.

Virtual Manipulatives (for math learning)

One argument for the design of virtual manipulatives has been saving money (physical manipulatives can be expensive, can be lost, can come in limited quantities). There is a library of virtual manipulatives available online http://nlvm.usu.edu/en/nav/vlibrary.html that provides a variety of activities and manipulatives for learning different math concepts.

(Shameless plug) I am also working on creating a new kind of virtual manipulative - one that attempts to build a bridge between artistic design efforts and mathematical learning. My desire to do this partially stems form the fact that I think some learners are more comfortable in either art or math, and that through this bridge they can step a little bit outside their comfort zones into the realm with which they are less comfortable (but still in a context they like). So, if you are very excited about art, you can try some math through your design activities, and if you like math but don't feel like you are very good at art, you can create some neat patterns that solve challenges posed from the mathematical perspective. I am interested in working with this laptop project.

I think that whatever (virtual) math manipulatives are available should be considered for this project. I would also like to see more of these virtual manipulatives developed for general use, but it seems like instances where money matters so much, this solution does not add any cost and would be useful.

K.K. Lamberty

5 April 2006

Please, let's not forget that the OLPC is for the delivery of content as well as applications. It is not a tech toy. I agree that physical objects that can be manipulated will make it easer to teach maths. But they don't need to be virtual. Include material to teach the children how to make manipulatives out of scrap wood or palm leaves. Include measuring tools so the kids can check their dimensions by holding the objects up to the screen. Integrate the construction of manipulatives into the learning process.

Nelements

Nelements is a generic 3d knowledge representation system that can be used to represent knowledge in a language of thought.