Network2/Dynamics
< Network2
Jump to navigation
Jump to search
Prerequisite concepts: bandwidth, latency, jitter, availability, model, unicast, multicast, broadcast, network stack
First, some baseline analysis:
Suppose we have a wireless link with capacity C. Suppose we have N nodes. Suppose each node n wants to maintain f(n) connections. If f(n) = 1 then we could allocate up to C/N per connection. If f(n) = N then we could allocate up to C/N^2 per connection. Instructive values: C=30 Mbps, N=40, f(n)=N ==> 19 Kbps / conn. Conclusion: beware O(N^2) behavior.
Several important numbers that we need to predict and to measure include bandwidth and latency figures:
tx == transmit, rx == receive, btx == broadcast btx/tx/rx - ICMPv6+IPv6+phys - router discovery (RD) btx/rx - ICMPv6+IPv6+phys - duplicate address detection (DAD) tx/rx - ICMPv6+IPv6+phys - NS neighbor discovery (ND) tx/rx - UDP+IPv6+phys - DNS query tx/rx - JSON+SSH+TCP+IPv6+phys - DNS update where "phys" describes the equations' dependence on the "physical" layer's frame overhead and MTU notable "phys" layers: Ethernet -- ad-hoc wifi, infra wifi, 802.11s mesh, switch, hub TLS+UDP+IPv4 -- openvpn L2TP+IPsec+IPv4 -- raccoon, isakmpd, openswan, etc. UDP+IPv4 -- teredo
Baseline overheads:
Ethernet: 14+4 IPv6: 40 ICMPv6: 4 ICMP RA: 32