Hardware design/lang-ko

From OLPC
Jump to navigation Jump to search
  번역근원 Hardware design 원문  
  english | español한국어   +/- 차이  
  • 공식 번역문이 아니므로 (No Official translation), 번역이 매끄럽지 않은 부분은 원문을 참조하거나, 기타 추가적으로 번역이 요구되는 부분은 주저 없이 discussion page에 메시지를 남겨주세요.
  • It's partial and NOT official translation. Refer to Original for precise content. If anyone wants more translation, just leave a message on the discussion page.

하드웨어 디자인 과정

하드웨어 디자인은 소프트웨어 디자인보다 제약사항이 많습니다; 가용하기 수 개월 전에도 칩 디자인에 상당한 영향을 미칠 수는 있지만, 귀하는 귀하가 지불할 수 있는 가격 수준에서 구매 가능한 수량에 해당되는 칩만을 실제로 사용할 수 있습니다. 단 하나의 부품이 빠지거나, 또는 귀하가 원하는 수량을 만족 못할 경우, 귀하의 생산을 지체됩니다. 소프트웨어 공동체에서는 유연성을 발휘할 폭이 넓으며, 수정과 무제한 복사가 가능합니다.

Designing hardware is much more constrained than software; while you may sometimes have great influence on the design of a chip many months in advance of availablility, you can only actually use chips which you can get in the volumes required at prices that you can afford. Even a single missing component, or component not available in the quantities you need, may cripple your production. Many in the software community, who are used to more fluid ability to modify design and produce in unlimited copies, find this a foreign concept.

하드웨어 디자인은 소세지 제작과 비슷합니다: 농부 (칩 설계자)와 친하다면, 훨씬 미리부터 새로운 재료를 재배할 수 있습니다. 그러나, 귀하가 생산해야 할 수량으로 실제로구매할 수 있는 재료만 가지고 귀하의 소시지를 만들 수 있습니다. 때로, 전체 요리를 망치지 않고 재료를 바꿀 수도 있지만, 요리를 망칠 각오를 해야 합니다. 이 경우, 우리는 Mark Foster 가 말한 단일 칩을 가지고 있으며, CPU와 디스플레이 사이에 위치하고, 미세하게 조종할 수 있습니다.

이 프로세스에 관심이 있다면, 이 위키의 옛 버전을 참조하십시오.

Designing hardware is similar to making sausage: you may be able to grow new ingredients starting long in advance if you are friendly with farmers (chip designers). You can only make your sausage, however, with the ingredients required by your recipe that you can actually buy in the volume you need to manufacture. Sometimes you can substitute ingredients without spoiling the general recipe, and sometimes the result would be inedible. In this case, we have a single chip that Mark Foster is specifying, that sits between the CPU and the display, and over which we have detailed control. If you'd like some insight into this process, you can look at older versions of this page in the wiki.

대량 생산을 위한 디자인

더우기, 하드웨어의 대량 생산은 오늘날 매우 특화된 비즈니스이며, 해당 하드웨어가 수행해야 할 것을 규정하는 조직/기업과 대량 생산 전문 ODM (original device manufacturer)간의 연합 형태를 취합니다; 더러 주요 및 사소한 부속품 선정 시점까지. ODM은 일반적으로 제품의 세부 설계를 수행하는데, 다양한 선택 가능한 품목 중에서 특정한 부품을 선택하거나, schematics, 레이아웃, 보드 라우팅, 기계적 설계, 테스팅, 생산을 위한 디버깅, 물류, 그리고 완성품의 생산입니다.

Furthermore, production of high-volume hardware is now a very specialized business, and is now often joint between the organization/company that specifies what the hardware should do—often to the point of selection of major and minor components—and an ODM (original device manufacturer), which specializes in very high-volume design and production. The ODM generally does the detailed design for production; e.g., exact part selection if there are variants, schematics, layout, board routing, mechanical design, testing, debugging for production, logistics, and production of the finished goods.

OLPC의 경우, ODM은 Quanta입니다.

In OLPC's case, the ODM is Quanta, as announced in mid December. There is a good chance that your laptop was manufactured by Quanta, headed by Barry Lam, which is possibly the largest company few people have heard of. Quanta manufactures more laptops than any other company in the world (almost 1/3rd of the total made), whether branded HP or Apple or others. Detailed design of the first production OLPC design is just starting, though OLPC has investigated (and continues to investigate) the possible components and other design tradeoffs.

CPU칩 생산자들은 일반적으로 샘플 디자인, 개발보드, 그리고 어플리케이션 노트를 제공하며, 그들 스스로 이용하는 경우가 많지만, 귀하가 원하지 않는 인터페이스나 하드웨어를 번들로 끼워 넣은 경우가 더러 있습니다. 이것은 그들의 제품이 실제 제품 "속에서 설계되는" 방법을 명료하게 합니다. 우리는 AMD "Rumba" 보드를 이용했으며, 낸드 플레시를 저장장치로 활용했습니다.

Note that CPU chip manufacturers generally provide sample designs, development boards, and application notes, that are often complete and usable by themselves, though often include interfaces or hardware you might not choose in volume production. These clarify how their products might be "designed in" to actual products. Our prototype machine seen at Tunis was using one of the AMD "Rumba" boards. It approximated much of the first OLPC hardware, though used a conventional disk rather than NAND flash, and has components we will not use (e.g. ethernet), and that conceptual (but working) model lacked the much cheaper flat panel that is under development.

AMD 칩의 자세한 schematics 과 레이아웃은 developer programs을 참조하십시오.

Detailed schematics and layouts of such sample AMD designs are generally available in the chip manufacturer's developer programs. If you are interested in exact design details of hardware you can get for immediate experimentation, we direct your attention to these programs, which generally include the ability to buy such sample hardware. Most of the information required to program devices, however, is completely freely available at the manufacturer's web sites in fully public specifications. In concert with ODMs, such sample designs are generally customized to fit the exact product needs and engineered for high-volume-production tooling and techniques that are not applicable to low-volume development-board runs. OLPC has just entered in partnership with Quanta on this engineering-for-production phase of the project .

디자인 도면은 NDA 합의 하에 생산이 시작된 뒤에 프로그래머들에게 공개됩니다.

Detailed schematics and board layouts of these high-volume designs are often considered proprietary to the ODM's, or jointly owned by both parties involved. They represent the competitive advantage one ODM may have with its rivals (who may have access to the same components as they do). Those design schematics are sometimes available to programmers after production starts under NDA agreements; for example, schematics of many of the iPAQ handhelds were made available to programmers in the open-source community under NDA, when insufficient written programming information was available. OLPC will try to document our designs sufficiently to avoid NDAs; we expect this will be less effort than the logistics of requiring NDAs in such a large and diverse community.

예상되는 디자인들

현재 세 가지 세대의 머신들을 예상하며, 첫째는 2007년 중반에 선적됩니다.

이후 디자인들은 아직 생산되지 않는 부품들을 이용하게 될 것이며, 오픈소스 공동체가 그러한 부품의 스펙에 접근하여 드라이버를 개발할 수 있도록 프로그램을 준비하겠습니다.

Currently we can foresee three generations of machines: a first one to ship in mid 2007. Subsequent OLPC designs may use components that have not yet been shipped by their manufacturer, and we often will arrange a program whereby the open source community can get early access to specifications of those components for driver development.

향후에는 E-Ink와 같은 디스플레이 기술이 적용될 것입니다. We also can anticipate future display technologies such as E-Ink, though such displays are still cloudy in the crystal ball.

We will try to keep this specification up to date as more and more details of the first design (and subsequent designs) are nailed down, provide links to specifications for the chosen components, and provide information required to program them (e.g. address space assignments). The first generation design uses already available components, with the (major) exception of the new flat panel and the chip that drives it, and we expect a novel bi-modal touch pad, and a ASIC to interface NAND flash, SD and a camera.

평판 패널과 LCD 패널의 전기 인터페이스는 현재 세부 엔지니어링 중입니다. 평판 패널 패밀리는 모두 동일한 LCD 패널에 기초하지만, 컬러 필터, 백라이트 또는 일시적 컬러 종류가 다른데, 상이한 속성들 (전력 소비, 해상도, gamut)이며, 초기 디스플레이 패널은 컬러 필터를 사용하고, 매우 잘 작동하며, 생산을 위한 TFT 프로세서 변경이 필요하지 않습니다.

여러 다른 디자인들은 리스크가 높지만, 유효 해상도나 전력 소비 면에서 성능은 좋습니다. 우리가 초기에 사용하는 안정성이 높은 패널은 2007년이나 2008년 생산에서는 다른 걸로 교체될 수 있습니다. 3M이 이러한 디스플레이 디자인에 사용되는 특수 광학 부품들을 구성하고 있습니다.

The electrical interface to the flat panel and the LCD panel itself is now in detailed engineering. A family of flat panels all based on a common LCD panel, but differing on their use of color filters, what kinds of backlights or temporal color, which have different properties (power consumption, resolution, gamut) and risks will be built in the future, the initial display panel uses color filters

and works extremely well, and does not require TFT process changes for manufacturing.

Several other designs are higher risk, but better performance, either on effective resolution or power consumption. It we will initially use this low risk panel and may phase in one of the alternatives to manufacturing later in 2007 or 2008. 3M is building specialized plastic optical components being used in the design of these displays.