Hardware specification: Difference between revisions

From OLPC
Jump to navigation Jump to search
m (→‎Specifications: Added imperial weights.)
 
(80 intermediate revisions by 33 users not shown)
Line 1: Line 1:
{{OLPC}}
{{OLPC}}
{{Translations}} <!-- to add new translations edit [[Hardware design/translations]] -->
{{Translations}} <!-- to add new translations edit [[Hardware design/translations]] -->
{{TOCright}}


The '''XO-1''' laptop is a central focus of One Laptop Per Child. After three years of development, it entered mass production in November 2007. There are now [[Deployments|millions of units deployed in the field]], and thousands more with developers and for testing in schools all over the world.
=Laptop Hardware=
OLPC has developed newer hardware generations [[XO-1.5]] and [[XO-1.75]] that share the XO-1's industrial design.

The XO laptop is the center of One Laptop Per Child. After three years of development, it is approaching mass production, with several thousand Beta test (B2) units deployed to developers and for testing in schools in participating countries. The laptop design has just undergone a final minor update to keep up with advancements in technology.


== Specifications ==
== Specifications ==
[[Image:drawing75c1.jpg|thumb|right]]
[[Image:drawing75c1.jpg|thumb|right]]
[[Image:olpc_XO_dimensions.jpg|thumb|Dimensioned Drawing of XO, click to enlarge]]
[[Image:Olpc XO dim-Optimized.png|thumb|Dimensioned Drawing of XO, click to enlarge]]


The [[Media:CL1_Hdwe_Design_Spec.pdf|definitive laptop specification]] is only available in PDF format. This page attempts to accurately reflect that information.
The [[Media:CL1A_Hdwe_Design_Spec.pdf|definitive laptop specification]] is only available in PDF format. This page attempts to accurately reflect that information.
''Note: this is the specification of the CL1A XO-1 production laptop. The specification for the earlier CL1 version (with the wide dual-mode touchpad) is [[Media:CL1_Hdwe_Design_Spec.pdf|here]].''


===Physical dimensions===
===Physical dimensions===
* Approximate dimensions: 242mm × 228mm × 32mm (see drawing to the right for detailed dimensions)
* Approximate dimensions: 242mm × 228mm × 32mm (see drawing to the right for detailed dimensions)
* Approximate weight:
* Approximate weight:
** XO laptop with LiFeP battery: 1.45KG (~3.20lbs);
** XO laptop with LiFePO4 battery: 1.45KG (~3.20lbs);
** XO laptop with NiMH battery: 1.58KG (~3.48lbs);
** XO laptop with NiMH battery: 1.58KG (~3.48lbs);
* Configuration: Convertible laptop with pivoting, reversible display; dirt- and moisture-resistant system enclosure; no fan.
* Configuration: Convertible laptop with pivoting, reversible display; dirt- and moisture-resistant system enclosure; no fan.


===Core electronics===
===Core electronics===
* A photo of the [[XO Motherboard|XO-1 motherboard]] is available, with or without annotations.
* CPU: x86-compatible processor with 64KB each L1 I and D cache; at least 128KB L2 cache;
* CPU: x86-compatible processor with 64KB each L1 I and D cache; at least 128KB L2 cache;
** [http://www.amd.com/files/connectivitysolutions/geode/geode_lx/33234G_LX_databook.pdf Datasheet] (dead link)
** [http://www.amd.com/us-en/assets/content_type/DownloadableAssets/33358e_lx_900_productb.pdf AMD Geode LX-700@0.8W] ([http://wiki.laptop.org/go/image:lx_databook.pdf datasheet])
* CPU clock speed: 433 Mhz;
* CPU clock speed: 433 Mhz;
* ISA compatibility: Support for both the MMX and 3DNow! x86 instruction-set extensions;
* i586 instruction set (including MMX and 3DNow! Enhanced) with additional Geode-specific instructions
** Athlon instruction set (including MMX and 3DNow! Enhanced) with additional Geode-specific instructions
* Companion chips: PCI and memory interface integrated with CPU;
* Companion chips: PCI and memory interface integrated with CPU;
** North Bridge: PCI and Memory Interface integrated with Geode CPU ([http://www.amd.com/us-en/ConnectivitySolutions/ProductInformation/0,,50_2330_9863_13022%5E13073,00.html info])
** North Bridge: PCI and Memory Interface integrated with Geode CPU ([https://web.archive.org/web/20061019093748/http://www.amd.com/files/connectivitysolutions/geode/geode_lx/33234d_lx_ds.pdf info])
** South Bridge: [http://www.amd.com/us-en/ConnectivitySolutions/ProductInformation/0,,50_2330_9863_9864%5E13054,00.html AMD CS5536] ([http://www.amd.com/files/connectivitysolutions/geode/geode_lx/33238f_cs5536_ds.zip datasheet])
** South Bridge: [https://web.archive.org/web/20130626041210/http://support.amd.com/us/Embedded_TechDocs/33238G_cs5536_db.pdff datasheet]
* Graphics controller: Integrated with CPU; unified memory architecture;
* Graphics controller: Integrated with CPU; unified memory architecture;
* Embedded controller: ENE KB3700 or ENE KB3700B;
* Embedded controller: ENE KB3700 or ENE KB3700B;
Line 34: Line 35:
* BIOS: 1024KiB SPI-interface flash ROM;
* BIOS: 1024KiB SPI-interface flash ROM;
* Open Firmware used to load the operating system;
* Open Firmware used to load the operating system;
* Mass storage: 1024 MiB SLC NAND flash, high-speed flash controller;
* Mass storage: 1024 MiB SLC NAND flash; (a few "Red XOs" have been built with 2048 MiB of flash)
* Drives: No rotating media.
* Drives: No rotating media.
* CAFE ASIC (camera- and flash-enabler chip provides high-performance camera, NAND FLASH and SD interfaces); Marvell 88ALP01: [http://www.marvell.com/products/pcconn/88ALP01.jsp CAFE Specification]
* CAFE ASIC (camera- and flash-enabler chip provides high-performance camera, NAND FLASH and SD interfaces); Marvell 88ALP01: [http://www.marvell.com/products/pcconn/88ALP01.jsp CAFE Specification] or [http://wiki.laptop.org/images/5/5c/88ALP01_Datasheet_July_2007.pdf local copy] plus [http://dev.laptop.org/ticket/1339#comment:17 presence detect erratum]


[[Image:Proto-a-front.jpg|thumb|Prototype-A Motherboard]]
[[Image:Proto-a-front.jpg|thumb|Prototype-A Motherboard]]
Line 42: Line 43:


===Display===
===Display===
{{main|Display}}
* [[Display | Liquid-crystal display]]: 7.5” dual-mode TFT display;
* [[Display | Liquid-crystal display]]: 7.5” dual-mode TFT display;
* Viewing area: 152.4 mm × 114.3 mm;
* Viewing area: 152.4 mm × 114.3 mm;
* Two "modes" depending on lighting conditions:
* Two modes: (1) grayscale (B&W) reflective mode (for outdoor use—sunlight-readable); and (2) color backlight Mode (for indoor use);
** reflective mode: high-resolution (200 DPI), 1200(H) × 900(V) grayscale pixels, power consumption 0.1–0.2Watts;
:(1) Grayscale (B&W) reflective mode: for outdoor use—sunlight-readable; primarily lit from the front by ambient light; high-resolution (200 DPI), 1200(H) × 900(V) grayscale pixels; power consumption 0.1–0.2Watts;
** backlight mode: built in sub-pixel sampling of the high-resolution display results in approximately 800(H) × 600(V) color pixels, power consumption 0.2–1.0Watts;
:(2) Color, backlight mode: for indoor use; primarily lit from behind by the LED backlight; built in sub-pixel sampling of the displayed color information results in a perceived resolution of at least 1024(H) × 768(V); power consumption 0.2–1.0Watts;
* The [[:Image:DCON_Specification%2C_V0.8.odt|display-controller chip (DCON)]] with memory that enables the display to remain live with the processor suspended. The DCON also formats data for the display.
* The [[DCON|display-controller chip (DCON)]] with memory that enables the display to remain live with the processor suspended. The DCON also formats data for the display.
* This [[Display | Liquid-crystal display]] is the basis of our extremely low power architecture. The XO is usable while the CPU and much of the motherboard is regularly turned off (and on) so quickly that it's imperceptible to the user. Huge power savings are harvested in this way (e.g. by turning stuff on the motherboard off when it's not being used (if even for a few seconds), while keeping the display on).
* This [[Display | Liquid-crystal display]] is the basis of our extremely low power architecture. The XO is usable while the CPU and much of the motherboard is regularly turned off (and on) so quickly that it's imperceptible to the user. Huge power savings are harvested in this way (e.g. by turning stuff on the motherboard off when it's not being used (if even for a few seconds), while keeping the display on).


: ''Note: web browser images are currently scaled up so that an image of very roughly [800 × 600] fills up the browser window.''
: ''Note: web browser images are currently scaled up so that an image of very roughly [800 × 600] fills up the browser window.''


[[Image:EToys - new display.jpg|thumb|right|eToys ([[Squeak]])running on the OLPC display]]
[[Image:EToys - new display.jpg|thumb|right|[[Etoys]] running on the first OLPC display prototype]]


===Integrated peripherals===
===Integrated peripherals===
* Keyboard: 80+ keys, 1.0mm stroke; sealed rubber-membrane key-switch assembly;
* Keyboard: 80+ keys, 1.0mm stroke; sealed rubber-membrane key-switch assembly;
** [[OLPC_Keyboard_layouts|Keyboard Layouts]]
** [[OLPC_Keyboard_layouts|Keyboard Layouts]]
** Layout pictures: [[:Image:Keyboard english.png|English]], [[:Image:Keyboard arabic.png|Arabic]], [[:Image:Keyboard thai.png|Thai]], [[:Image:NG-MP-alt.png|West African (Nigeria)]], [[:Image:BR-MP-v1.png|Portuguese]], [[:Image:ES-MP-v1.png|Spanish]], [[:Image:Ethiopic-B3.png|Amharic]], [[:Image:Rwanda-B3.png|French (not final)]], [[:Image:Urdu-MP.png|Urdu]], [[:Image:RU-MP-v1.png|Cyrillic]], [[:Image:TR-MP-v1.png|Turkish (not final)]], [[:Image:NP-MP-v1.png|Nepali]], [[:Image:MO-MP-v1.png|Mongolian]], [[:Image:KA-MP-v1.png|Kazakh]], [[:Image:MR-MP-v2.png|Devanagari]], [[:Image:UZ-MP.png|Uzbek]], [[:Image:PS-MP.png|Pashto]], [[:Image:AF-MP.png|Dari]]
** Layout pictures: [[:Image:Keyboard english.png|English]], [[:Image:Keyboard arabic.png|Arabic]], [[:Image:Keyboard thai.png|Thai]], [[:Image:NG-MP-alt.png|West African (Nigeria)]], [[:Image:BR-MP-v1.png|Portuguese]], [[:Image:ES-MP-v1.png|Spanish]], [[:Image:Ethiopic-B3.png|Amharic]], [[:Image:Rwanda-B3.png|French]], [[:Image:Urdu-MP.png|Urdu]], [[:Image:RU-MP-v1.png|Cyrillic]], [[:Image:TR-MP-v1.png|Turkish (not final)]], [[:Image:NP-MP-v1.png|Nepali]], [[:Image:MO-MP-v1.png|Mongolian]], [[:Image:KA-MP-v1.png|Kazakh]], [[:Image:MR-MP-v2.png|Devanagari]], [[:Image:UZ-MP.png|Uzbek]], [[:Image:PS-MP.png|Pashto]], [[:Image:AF-MP.png|Dari]], [[:Image:FF-MP.png|Pulaar (Fula)]], [[:Image:IT-MP.png|Italian]]
* Gamepad: Two sets of four-direction cursor-control keys;
* Gamepad: Two sets of four-direction cursor-control keys;
* Touchpad: Dual capacitance/resistive touchpad; supports written-input mode;
* Touchpad: Capacitance touchpad
** ALPS Electric [[Touch Pad/Tablet|Dual capacitance/resistive touchpad]];
** ALPS Electric [[Touch Pad/Tablet|Dual capacitance/resistive touchpad]];
* Audio: AC’97 compatible audio subsystem; Internal stereo speakers and amplifier; internal monophonic microphone; jacks for external headphones or microphone;
* Audio: AC’97 compatible audio subsystem; Internal stereo speakers and amplifier; internal monophonic microphone; jacks for external headphones or microphone;
** [http://www.analog.com/en/prod/0%2C2877%2CAD1888%2C00.html Analog Devices AD1888] and [http://www.analog.com/ Analog Devices SSM2302] for audio amplification
** [http://www.analog.com/en/prod/0%2C2877%2CAD1888%2C00.html Analog Devices AD1888] and [http://www.analog.com/en/audiovideo-products/audio-amplifiers/ssm2302/products/product.html Analog Devices SSM2302] for audio amplification
[[Image:AP1 15.jpg|thumb|100px|Keyboard detail]]
[[Image:AP1 15.jpg|thumb|100px|Keyboard detail]]
* Camera: integrated color video camera; 640 x 480 resolution at 30 FPS; independent (and undefeatable by software) display of microphone and camera recording status; the camera and device driver support disabling AGC and automatic color balancing, to enable its use as a photometric sensor for educational applications;
* Camera: integrated color video camera; 640 x 480 resolution at 30 FPS; independent (and undefeatable by software) display of microphone and camera recording status; the camera and device driver support disabling AGC and automatic color balancing, to enable its use as a photometric sensor for educational applications;
** [http://www.ovt.com/products/part_detail.asp?id=53 Omnivision OV7670]
** [http://www.ovt.com/products/detail.php?id=73 Omnivision OV7670]
* [[Wireless| Wireless Networking]]: Integrated 802.11b/g (2.4GHz) interface; 802.11s (Mesh) networking supported; dual adjustable, rotating antennas support diversity reception; capable of mesh operation when CPU is powered down;
* [[Wireless| Wireless Networking]]: Integrated 802.11b/g (2.4GHz) interface; 802.11s (Mesh) networking supported; dual adjustable, rotating antennas support diversity reception; capable of mesh operation when CPU is powered down;
** Marvell [[Libertas]] wireless chipset, [[88W8388]] controller and [[88W8015]] radio
** Marvell [[Libertas]] wireless chipset, [[88W8388]] controller and [[88W8015]] radio
Line 71: Line 73:


===External connectors===
===External connectors===
* DC power: 6mm (1.65mm center pin) connector; 11 to 18 V input usable, –32 to 40V input tolerated; power draw limited to 15 W;
* DC power: 6mm (1.65mm center pin) connector; 11 to 18 V input usable, –32 to +40V input tolerated; power draw limited to 17 W; - see power connector dimensions at [[Battery and power#Mechanical|Battery and power]].
* Headphone output: standard 3.5mm 3-pin switched stereo audio jack;
* Headphone output: standard 3.5mm 3-pin switched stereo audio jack;
* Microphone input: standard 3.5mm 2-pin switched mono microphone jack; selectable 2V DC bias; selectable sensor-input mode (DC or AC coupled);
* Microphone input: standard 3.5mm 2-pin switched mono microphone jack; selectable 2V DC bias; selectable sensor-input mode (DC or AC coupled);
* USB: Three Type-A USB 2.0 connectors; Up to 1A power supplied (total);
* USB: Three Type-A USB 2.0 connectors; Up to 1A power supplied (total);
* Flash Expansion: SD Card slot.
* Flash Expansion: [[SD]] Card slot.


[[Image:Rotate-1.jpg|thumb|Connectors]]
[[Image:Rotate-1.jpg|thumb|Connectors]]
Line 85: Line 87:
* Electronics integrated with the pack provide:
* Electronics integrated with the pack provide:
** Identification;
** Identification;
** Battery charge and capacity information;
** Battery charge and capacity monitoring chip ([[Media:DS2756.pdf|Maxim DS2756 data sheet]]);
** Thermal and over-current sensors along with cutoff switch to protect battery;
** Thermal and over-current sensors along with cutoff switch to protect battery;
* Minimum 2,000 charge/discharge cycles (to 50% capacity of new).
* Minimum 2,000 charge/discharge cycles (to 50% capacity of new).
* [[Power Management]] will be critical
* [[Power Management]] will be critical

See [[Laptop Batteries]] or more information.

[[Image:Bottomdrawing.jpg|thumb|Battery]]
[[Image:Bottomdrawing.jpg|thumb|Battery]]


===BIOS/loader===
===BIOS/loader===
* [[Open Firmware]] (including hardware initialization and fast resume).
* [[Open Firmware]] (including hardware initialization and fast resume).
* Panasonic ML1220 battery


===Environmental specifications===
===Environmental specifications===
* Temperature: UL certification planned to 45C in Q32007, pending 50C certification in mid-2008;
* Temperature: UL certification planned to 45C in Q32007, pending 50C certification in mid-2008;
* Humidity: UL certification planned to IP42 (perhaps higher) when closed, the unit should seal well enough that children walking to and from school need not fear rainstorms and dust;
* Humidity: UL certification planned to [[IP_Code|IP42]] (perhaps higher) when closed, the unit should seal well enough that children walking to and from school need not fear rainstorms and dust;
* Maximum altitude: –15m to 3048m (14.7 to 10.1 PSIA) (operating), –15m to 12192m (14.7 to 4.4 PSIA) (non-operating);
* Maximum altitude: –15m to 3048m (14.7 to 10.1 PSIA) (operating), –15m to 12192m (14.7 to 4.4 PSIA) (non-operating);
* Shock 125g, 2ms, half-sine (operating) 200g, 2ms, half-sine (non-operating);
* Shock 125g, 2ms, half-sine (operating) 200g, 2ms, half-sine (non-operating);
* Random vibration: 0.75g zero-to-peak, 10Hz to 500Hz, 0.25 oct/min sweep rate (operating); 1.5g zero-to-peak, 10Hz to 500Hz, 0.5 oct/min sweep rate (nonoperating);
* Random vibration: 0.75g zero-to-peak, 10Hz to 500Hz, 0.25 oct/min sweep rate (operating); 1.5g zero-to-peak, 10Hz to 500Hz, 0.5 oct/min sweep rate (nonoperating);
* 2mm plastic walls (1.3mm is typical for most systems).
* 2-3mm plastic walls (1.3mm is typical for most systems).


===Regulatory requirements===
===Regulatory requirements===
[[File:RoHS_Restriction_of_Hazardous_Substances_Directive_Logo.png|right|220px]]
* The usual US and EU EMI/EMC (electromagnetic-interference and electromagnetic-compatibility) requirements will be met;
* The usual US and EU EMI/EMC (electromagnetic-interference and electromagnetic-compatibility) requirements will be met;
* The laptop meets IEC 60950-1, EN 60950-1, and CSA/UL 60950-1 specifications. It also complies with UL 1310 and UL 498. In order to guarantee the safety of children using the laptop, it passes ASTM F 963;
* The laptop meets IEC 60950-1, EN 60950-1, and CSA/UL 60950-1 specifications. It also complies with UL 1310 and UL 498. In order to guarantee the safety of children using the laptop, it passes ASTM F 963;
* The external power adapter complies with IEC, EN, and CSA/UL 60950-1;
* The external power adapter complies with IEC, EN, and CSA/UL 60950-1;
* The removable battery pack complies with IEC, EN, and CSA/UL 60950-1 and UL 2054;
* The removable battery pack complies with IEC, EN, and CSA/UL 60950-1 and UL 2054;
* RoHS (Restriction of Hazardous Substances Directive – EU) compliant.
* [http://ec.europa.eu/environment/waste/rohs_eee/legis_en.htm RoHS (Restriction of Hazardous Substances Directive – EU) compliant.]

===Support Hardware===

''Serial Adapter''
* [[Serial_adapters|3.3V TTL to RS-232/USB Adapter]] [[Image:serialadapter.jpg|thumb|Serial Adapter]]


==Laptop Development Schedule==
==Laptop Development Schedule==


On April 15, 2006, the first prototypes of the [[XO]], the [[XO_A|A1]] prototype boards, were first powered on. Development continued with the [[XO_B1|B1]], the first complete prototype laptop, in November of 2006. The [[XO_B2|B2]] laptops were the first to incorporate the CaFE chip, and was produced in small quantities for initial trials in January 2007. In April of 2008 the design was refreshed with a faster processor and more memory/NAND flash. The [[XO_B3|B3]] prototypes were the first test of this design. Slight refinements were incorporated into the [[XO_B4|B4]], manufactured in June 2008, which is very similar to the production version of the laptop. Finally, mass production started in November 2007 with the [[XO_C2|C2]] version.
The final test build (C Test 1), on the final production line, has been done. The next step is a quick
pre-build of 50 motherboards in October to test last minute [[B4_Suspend_ECR|changes]], then mass production, expected in November.


Each prototype and production version is described in more detail separately: [[XO_A|A1]], [[XO_B1|B1]], [[XO_B2|B2]], [[XO_B3|B3]], [[XO_B4|B4]], [[XO_C1|C1]], '''[[XO_C2|C2]]'''
=== Preproduction Test Systems (CTest-1, or C1) ===


==Serial Adapter==
This build is of 300 laptops produced as a test of the manufacturing process on the main production line, and should happen starting August 6th, 2007. Slip resistance rubber feet will be added as will more easily replaceable bunny ears (just two screws per ear after bezel removal). The hinge stop that appeared in B3/B4 will be eliminated or reduced (this is used to the stop the display at perpendicular before it tilts back further). Bean texture will be applied to the exterior white parts and "satin" texture to the the rest of the laptop plastic parts. A C1 laptop will be nearly identical to the production unit ...
[[Image:serialadapter.jpg|100px|right]]


In order to conserve parts/space, while the motherboard does provide two serial ports for debugging (one populated in production), it does not provide voltage translators to fully implement the RS-232 protocol. Thus a [[Serial_adapters|3.3V TTL to RS-232 (or USB) Adapter]] is needed.
Preproduction Test Systems have a label under the battery that says '''C-TEST-SAMPLE'''.


<br clear="all">
=== Beta Test 4 Systems (BTest-4, or B4) ===
== Other Documents ==


* A complete [[Repair Parts]] List is under development.
This build which ran from June 20-25, 2007, was the final chance to fix hardware and mechanical problems that were detected in the Beta Test 3 build of the XO. 2000 units were built.
* [[Media:XO-1_Schematics.pdf|Schematics]]

Texture was added to the upper handle bar, the hinge tilt was increased by 7 degrees, the hinge "squeak" was eliminated, the rabbit ears click in place when put in the "down" position", the slight camera vignetting seen in B3 was eliminated, and minor modifications were made to the motherboard.

Beta Test 4 Systems have a label under the battery that says '''B4-TEST-SAMPLE'''.

Beta Test 4 Systems work with current software releases. They may experience [[B4_Suspend_ECR|hardware problems with extensive suspend/resume or low battery]].

=== Beta Test 3 Systems (BTest-3, or B3) ===

This build—May 2007—is the first to use an updated design for the laptop.
It was the first build providing the processor and memory capabilities of the production version.
Noticeable improvements over BTest-2 include:
* A faster, lower power processor: the Geode LX-700
** 64 KB I/64 KB D of L1 Cache, 128 KB of L2 Cache (vs. 32 KB of L1 cache)
** Faster processor and memory clock (433/333 vs. 366/266)
** 1.5 W typ. vs. 3 W typ.
** Much better graphics processor, including support for rotated blits and depth conversion
* More memory: 256 MB of SDRAM (vs. 128 MB)
* extra screws
* insert molded rubber ears for better robustness
* a smaller battery cavity to improve robustness, make the bumper lines cleared
* 10-20V input voltage tolerance.
* new bumper tooling to allow the bumpers to be made of polycarbonate (as opposed to PC/ABS) with 3mm thickness and ribbing to 1.8mm (was 2mm and 1.2mm respectively)
* colored XO on the back cover (400 different color combinations so kids can distinguish their laptops from each other
* A keyboard that is much better to type on
* Finally a touchpad that is much easier to use and much more responsive
* a steel plate inside the entire keyboard base to reduce the feeling of flimsiness
* a flipped USB connector so each side has the same way up for a USB key or device
* A new hinge design allows greater tilt of the screen
* An improved case design (addressing strength)
A very small number of BTest-3 units (around a hundred) were built, all were used for hardware and low level software development.

Beta Test 3 Systems have a label under the battery that says '''B3-TEST-SAMPLE'''.

Beta Test 3 Systems work with current software releases. They may experience [[B4_Suspend_ECR|hardware problems with extensive suspend/resume or low battery]].

=== Beta Test 2 Systems (BTest-2, or B2) ===

Approximately 2500 systems were built by Quanta and distributed. These are fully functional machines with CaFE ASICs, and reflect some, but not all of the learning and improvements from testing of BTest-1. Much more information about the BTest-2 systems can be found in the [[BTest-2 Release Notes]]. Some of the details of the hardware design are to support the [[OLPC Human Interface Guidelines]].

BTest-2 systems are almost identical visually with BTest-1. BTest-3 will have more substantial physical differences. An easy way to tell the difference between BTest-1 and BTest-2 is that BTest-1 keyboards have white lettering, and BTest-2 has black lettering.

There are two flavors of B2. Beta Test '''2-1''' (B2-1) systems, which only have 128 MB of memory, have a label under the battery that says '''B2-TEST-SAMPLE''' and a label that says '''B2-#''', where # is one to 16. Beta Test '''2-2''' (B2-2) systems, which have 256MB of memory, have a label under the battery that says '''B2-7-ext'''.

Beta Test '''2-1''' laptops do not perform well with current software releases.

=== Beta Test 1 Systems (BTest-1) ===

Approximately 875 systems were built by Quanta in November 2006 and distributed. The BTest-1 systems were fully functional machines (compared to a BTest-2 system), but built before the custom integrated circuits were available. An Altera FPGA is used in place of the CaFE ASIC which is present in later builds, for NAND flash, camera, and SD interfaces. This FPGA has lower performance and consumes much more power than the CaFE ASIC does.Much more information about the BTest-1 systems can be found in the [[BTest-1 Release Notes]]. (Beta Test 1 Systems have a label under the battery that says '''B1-TEST-SAMPLE'''.)

BTest-1 and pre-BTest systems are no longer supported by our current software releases.

=== Pre-BTest boards ===

A small number of pre-BTest boards were built in preparation for building complete BTest systems. [[Btest_Boards|Developer information about B-test boards are here.]]

=== Alpha Test Prototype Electronics ===

Power up of the first OLPC electronics prototype boards occurred April 15, 2006. Power and ground testing continued over the weekend, and formal debug and BIOS bring up started Monday, April 17, 2006 at Quanta Computer's labs in Taipei, Taiwan. By Wednesday, April 19, Linux was booting on the first generation prototypes.

Photographs:
* [[media:Proto-a-front.jpg|Component side OLPC circuit board]]
* [[media:Proto-a-back.jpg|Back side of the OLPC circuit board]]
* [[media:Proto-a-linux.jpg|Picture of Linux running with circuit board in the lab]]
* [[media:Proto-a-screen.jpg|Picture of the screen of Linux running on the OLPC circuit board; fittingly, it shows a Chinese desktop]]

ATest systems are no longer supported by our current software releases.


== See also ==
== See also ==
===[[Environmental Impact]]===
===[[Hardware]]===
===[[Support]]===

The [[Media:CL1_Hdwe_Design_Spec.pdf|definitive laptop specification]] (only available in PDF format).

Formerly part of this page:
Formerly part of this page:
===[[Hardware uniqueness]]===
* [[Hardware uniqueness]]
===[[Hardware design]]===
* [[Hardware design]]
===[[Hardware modification]]===
* [[Hardware modification]]

=School Server Hardware=

While the laptop is rightfully at the center of OLPC, a valuable peripheral is the [[School_server|school server]]. OLPC will be building and distributing school servers along with the laptops, to extend the storage and computation provided by each laptop, as well as providing a local library and a mesh portal to the Internet.

Unlike the laptop, the [[School_server|school server]] is more of a [[XS_Server_Services|collection of services]] than a hardware platform. In a manner identical to the laptop, OLPC will collaborate with manufacturing partners to provide a cost-efficient hardware platform for running the recommended software. Unlike the laptop, the manufacturing collaboration will not be exclusive. Individual countries will be free (even encouraged) to design and manufacture their own school servers running derivatives of the OLPC school server software.

==XS==

This will be the school server designed by OLPC. It is mostly designed, but currently on hold as we reconsider manufacturers, and should reach early production volumes in spring 2008. See the [[XS_Server_Specification#XS_Specifications|specification]].


See also:
==XSX==
* [[Hardware Testing]]: Safety Certifications and Robustness
[[Image:XSX-side.jpg|thumb|right|300px|XSX limited-production prototype school server. The actual XS school servers won't look anything like this.]]
* [[Hardware]]
This is a prototype school server, built for early school trials in country. It will be integrated from off-the-shelf components, and will be overpowered compared to a production school server in order to simplify [[Trial1_Server_Software|early demands for system software]]. See the [[XS_Server_Specification#XSX_Specifications|specification]] and the [[XSX_Server_Implementation|implementation]].
* [[Support]]
* The '''[[Media:CL1_Hdwe_Design_Spec.pdf|definitive laptop specification]]''' (only available in PDF format).
[[Category:hardware]]
[[Category:developers]]
[[category:Hardware]]
[[Category:XO-1]]

Latest revision as of 20:50, 15 July 2016

  This page is monitored by the OLPC team.
  deutsch | english | español | français | italian | 日本語 | 한글 | português | русский indonesia HowTo [ID# 298833]  +/-  

The XO-1 laptop is a central focus of One Laptop Per Child. After three years of development, it entered mass production in November 2007. There are now millions of units deployed in the field, and thousands more with developers and for testing in schools all over the world. OLPC has developed newer hardware generations XO-1.5 and XO-1.75 that share the XO-1's industrial design.

Specifications

Drawing75c1.jpg
Dimensioned Drawing of XO, click to enlarge

The definitive laptop specification is only available in PDF format. This page attempts to accurately reflect that information. Note: this is the specification of the CL1A XO-1 production laptop. The specification for the earlier CL1 version (with the wide dual-mode touchpad) is here.

Physical dimensions

  • Approximate dimensions: 242mm × 228mm × 32mm (see drawing to the right for detailed dimensions)
  • Approximate weight:
    • XO laptop with LiFePO4 battery: 1.45KG (~3.20lbs);
    • XO laptop with NiMH battery: 1.58KG (~3.48lbs);
  • Configuration: Convertible laptop with pivoting, reversible display; dirt- and moisture-resistant system enclosure; no fan.

Core electronics

  • A photo of the XO-1 motherboard is available, with or without annotations.
  • CPU: x86-compatible processor with 64KB each L1 I and D cache; at least 128KB L2 cache;
  • CPU clock speed: 433 Mhz;
  • i586 instruction set (including MMX and 3DNow! Enhanced) with additional Geode-specific instructions
  • Companion chips: PCI and memory interface integrated with CPU;
    • North Bridge: PCI and Memory Interface integrated with Geode CPU (info)
    • South Bridge: datasheet
  • Graphics controller: Integrated with CPU; unified memory architecture;
  • Embedded controller: ENE KB3700 or ENE KB3700B;
  • DRAM memory: 256 MiB dynamic RAM; data rate: dual-DDR333-166Mhz;
  • BIOS: 1024KiB SPI-interface flash ROM;
  • Open Firmware used to load the operating system;
  • Mass storage: 1024 MiB SLC NAND flash; (a few "Red XOs" have been built with 2048 MiB of flash)
  • Drives: No rotating media.
  • CAFE ASIC (camera- and flash-enabler chip provides high-performance camera, NAND FLASH and SD interfaces); Marvell 88ALP01: CAFE Specification or local copy plus presence detect erratum
Prototype-A Motherboard

Display

Main article: Display
  • Liquid-crystal display: 7.5” dual-mode TFT display;
  • Viewing area: 152.4 mm × 114.3 mm;
  • Two "modes" depending on lighting conditions:
(1) Grayscale (B&W) reflective mode: for outdoor use—sunlight-readable; primarily lit from the front by ambient light; high-resolution (200 DPI), 1200(H) × 900(V) grayscale pixels; power consumption 0.1–0.2Watts;
(2) Color, backlight mode: for indoor use; primarily lit from behind by the LED backlight; built in sub-pixel sampling of the displayed color information results in a perceived resolution of at least 1024(H) × 768(V); power consumption 0.2–1.0Watts;
  • The display-controller chip (DCON) with memory that enables the display to remain live with the processor suspended. The DCON also formats data for the display.
  • This Liquid-crystal display is the basis of our extremely low power architecture. The XO is usable while the CPU and much of the motherboard is regularly turned off (and on) so quickly that it's imperceptible to the user. Huge power savings are harvested in this way (e.g. by turning stuff on the motherboard off when it's not being used (if even for a few seconds), while keeping the display on).
Note: web browser images are currently scaled up so that an image of very roughly [800 × 600] fills up the browser window.
Etoys running on the first OLPC display prototype

Integrated peripherals

Keyboard detail
  • Camera: integrated color video camera; 640 x 480 resolution at 30 FPS; independent (and undefeatable by software) display of microphone and camera recording status; the camera and device driver support disabling AGC and automatic color balancing, to enable its use as a photometric sensor for educational applications;
  • Wireless Networking: Integrated 802.11b/g (2.4GHz) interface; 802.11s (Mesh) networking supported; dual adjustable, rotating antennas support diversity reception; capable of mesh operation when CPU is powered down;
  • Status indicators: Power, battery, and WiFi (2), visible with lid open or closed; Microphone In-Use, and Camera In-Use, visible when lid is open.

External connectors

  • DC power: 6mm (1.65mm center pin) connector; 11 to 18 V input usable, –32 to +40V input tolerated; power draw limited to 17 W; - see power connector dimensions at Battery and power.
  • Headphone output: standard 3.5mm 3-pin switched stereo audio jack;
  • Microphone input: standard 3.5mm 2-pin switched mono microphone jack; selectable 2V DC bias; selectable sensor-input mode (DC or AC coupled);
  • USB: Three Type-A USB 2.0 connectors; Up to 1A power supplied (total);
  • Flash Expansion: SD Card slot.
Connectors

Battery

  • Pack type: 2 or 4 cells LiFePO4; or 5 cells NiMH, approx. 6V series configuration (subject to change);
  • Capacity: 16.5 Watt-hours (NIMH), 22 Watt-hours (LiFeP);
  • Fully-enclosed “hard” case; user removable;
  • Electronics integrated with the pack provide:
    • Identification;
    • Battery charge and capacity monitoring chip (Maxim DS2756 data sheet);
    • Thermal and over-current sensors along with cutoff switch to protect battery;
  • Minimum 2,000 charge/discharge cycles (to 50% capacity of new).
  • Power Management will be critical

See Laptop Batteries or more information.

Battery

BIOS/loader

  • Open Firmware (including hardware initialization and fast resume).
  • Panasonic ML1220 battery

Environmental specifications

  • Temperature: UL certification planned to 45C in Q32007, pending 50C certification in mid-2008;
  • Humidity: UL certification planned to IP42 (perhaps higher) when closed, the unit should seal well enough that children walking to and from school need not fear rainstorms and dust;
  • Maximum altitude: –15m to 3048m (14.7 to 10.1 PSIA) (operating), –15m to 12192m (14.7 to 4.4 PSIA) (non-operating);
  • Shock 125g, 2ms, half-sine (operating) 200g, 2ms, half-sine (non-operating);
  • Random vibration: 0.75g zero-to-peak, 10Hz to 500Hz, 0.25 oct/min sweep rate (operating); 1.5g zero-to-peak, 10Hz to 500Hz, 0.5 oct/min sweep rate (nonoperating);
  • 2-3mm plastic walls (1.3mm is typical for most systems).

Regulatory requirements

RoHS Restriction of Hazardous Substances Directive Logo.png
  • The usual US and EU EMI/EMC (electromagnetic-interference and electromagnetic-compatibility) requirements will be met;
  • The laptop meets IEC 60950-1, EN 60950-1, and CSA/UL 60950-1 specifications. It also complies with UL 1310 and UL 498. In order to guarantee the safety of children using the laptop, it passes ASTM F 963;
  • The external power adapter complies with IEC, EN, and CSA/UL 60950-1;
  • The removable battery pack complies with IEC, EN, and CSA/UL 60950-1 and UL 2054;
  • RoHS (Restriction of Hazardous Substances Directive – EU) compliant.

Laptop Development Schedule

On April 15, 2006, the first prototypes of the XO, the A1 prototype boards, were first powered on. Development continued with the B1, the first complete prototype laptop, in November of 2006. The B2 laptops were the first to incorporate the CaFE chip, and was produced in small quantities for initial trials in January 2007. In April of 2008 the design was refreshed with a faster processor and more memory/NAND flash. The B3 prototypes were the first test of this design. Slight refinements were incorporated into the B4, manufactured in June 2008, which is very similar to the production version of the laptop. Finally, mass production started in November 2007 with the C2 version.

Each prototype and production version is described in more detail separately: A1, B1, B2, B3, B4, C1, C2

Serial Adapter

Serialadapter.jpg

In order to conserve parts/space, while the motherboard does provide two serial ports for debugging (one populated in production), it does not provide voltage translators to fully implement the RS-232 protocol. Thus a 3.3V TTL to RS-232 (or USB) Adapter is needed.


Other Documents

See also

Formerly part of this page:

See also: