Network2: Difference between revisions

From OLPC
Jump to navigation Jump to search
mNo edit summary
mNo edit summary
 
(162 intermediate revisions by 4 users not shown)
Line 1: Line 1:
{{TOCright}}
This page proposes a design for networking based on Scott's [[Network Principles]] and then elaborates on the design with analysis, example configuration, and experimental results derived from it. Lastly, it credits those who have contributed to this design.
Last updated: [[User:Mstone|Michael Stone]] 04:15, 15 January 2010 (UTC) | '''[[Network2/Paper|paper version]]'''


Sugar's desired realtime collaboration experience can only be provided atop a robust and efficient network stack designed to accommodate automated diagnosis and standardized workarounds -- anything less only wastes students' and teachers' time and patience, contrary to our [[OLPC Human Interface Guidelines/Design Fundamentals/Key Design Principles|human interface guidelines]].
(If you've contributed and don't see your name, don't fret -- just add yourself with a word or two explaining your contribution!)


This '''unfinished''' essay summarizes an attempt to work out a simple way to realize this sort of network experience, with existing software and hardware, while also demonstrating the sort of thinking which might help other parts of the system achieve the same standard of quality.
= Design =


'''Quick links''': '''[[Network2/Paper|the Paper]]''' : (finished/''unfinished'' sections)
== Protocols ==


* Prior work: [[networking]], [[collaboration]], [[network principles]]
We take [http://tools.ietf.org/html/rfc2460 IPv6] and [http://tools.ietf.org/html/rfc1034 DNS] as the basis of our system and rely heavily the Linux Documentation Project's IPv6 [http://tldp.org/HOWTO/html_single/Linux+IPv6-HOWTO/ documentation].
* Background: [[Network2/Purpose|purpose]], [[Network2/Scenarios|scenarios]], [[Network2/Architecture|architecture]]
* Designs: [[Network2/Design|naming and internetworking]], ''[[Network2/Security|security ideas]]'', [[Network2/Diagnosis|diagnosis techniques]]
* Analyses: ''[[Network2/Dynamics|cost model]]'', ''[[Network2/Self-test|self-test algorithm]]''
* Experiments: [[Network2/Experiments/Dnshash|dnshash]], [[Network2/Experiments/Openvpn|openvpn]], ''[[Network2/Experiments/HE|6to4: HE]]'', ''[[Network2/Experiments/Sixxs|6to4: Sixxs]]'', ''[[Network2/Experiments/Simulation|simulation]]'', ''[[Network2/Experiments/openwrt|openwrt]]'', ''[[Network2/Experiments/tinydns|olpcdyndns1]]''


'''Personal goals...'''
A couple of key facts and expectations inform the rest of this design, like:


# "I want to use familiar tools in my activities, -- like Twisted, curl, ssh, rsync, and email -- both under a tree, in a walled garden, and out on the public Internet, without modification or wrappers."
* hosts will have multiple interfaces,
# "I want a design that has 20% fewer ways to fail, and that offers manual overrides for the failure modes that remain."
* interfaces will have multiple addresses,
# "I want to chop 2-3 levels from the current collaboration stack's 6-level 'fast-path'."
* DNS queries (used via <tt>getaddrinfo()</tt>) will return multiple results
# "I want to collaborate with people who only have web browsers -- they outnumber people with Jabber clients by millions."
* these results will be sorted in a [http://tools.ietf.org/html/rfc3484 sane order], and
* hosts will choose routes for packets based on how specifically the routes match the destination and on any QoS information available to the routing node.


'''Finally, to help out''', please improve my writing, experiment with my ideas, and share this work with your friends!
== Client IPv6 Configuration ==


==Subpages==
Your job is to be an IPv6 node. Consequently, when you bring up your interfaces,
{{Special:PrefixIndex/{{PAGENAMEE}}/}}


# You might [http://tools.ietf.org/html/rfc2461 discover] an IPv6 router [http://tools.ietf.org/html/rfc2463 advertising] on one of your links.
#* (See <tt>sysctl net.ipv6.conf.all.accept_ra</tt> and related variables.)
# You might try out [https://fedorahosted.org/dhcpv6/ dhcp6c].
# You might have some kind of IPv4 connectivity. If so, [http://www.sixxs.net/faq/connectivity/?faq=comparison connect] to the Internet or to other internetworks of your choice.
#* ([http://www.remlab.net/miredo/ miredo] and [http://openvpn.net/ openvpn] seem particularly easy to configure and hence to experiment with...)
# Use [[dnshash]] to add guessable link-local addresses to all your links.


[[Category:Network2]]
== Server IPv6 Configuration ==
[[Category:Subsystems]]

Your job is to be an IPv6 router and a [http://tools.ietf.org/html/rfc1035 DNS server]. One of several situations might obtain:

# You might discover an IPv6 router advertising one or more IPv6 prefixes on your outbound link(s).
# You might have some kind of IPv4 connectivity. If so, [http://www.sixxs.net/faq/connectivity/?faq=comparison connect] to the Internet or to other internetworks of your choice.
# You might be under a tree. If so, generate a [http://tools.ietf.org/html/rfc4193 Unique Local Address] prefix.
# (Use [[dnshash]] to add guessable link-local addresses to all your links?)

When done, use [http://www.litech.org/radvd/ radvd] or [https://fedorahosted.org/dhcpv6/ dhcp6d] to share addresses.

== Server DNS Configuration ==

One of the server's most important jobs is to get itself on appropriate internetworks so that it can dynamically map stable (DNS) names to unstable names (IPv6 addresses) for itself and its clients.

Unfortunately, the most reliable and secure means of updating these mappings is likely to be bespoke -- [http://tools.ietf.org/html/rfc2136 RFC 2136] is not widely implemented and specifies no concrete security protocol while DNSSEC seems immature at present.

Consequently, I propose the following strawman update protocol -- exchange an RFC-2136 UPDATE packet and response over your favorite authenticated RPC protocol with the nameserver.

(My favorite protocol for this sort of thing is currently "json-over-SSH-to-python-and-make", but variations (ucspi-ssl, 9p, etc.) make me smile.)

''(Other possibilities: maybe DNSSEC isn't so hard? Maybe DNSCurve will be usable?)''

== Client DNS Configuration ==

Clients which have been registered with one or more servers need to update those servers when their addresses change using the protocol described above.

= Analysis =

== Bandwidth Usage ==

Several important numbers that we need to predict and to measure:

tx == transmit, rx == receive, btx == broadcast
btx/tx/rx - ICMPv6+IPv6+phys - router discovery (RD)
btx/rx - ICMPv6+IPv6+phys - duplicate address detection (DAD)
tx/rx - ICMPv6+IPv6+phys - NS neighbor discovery (ND)
tx/rx - UDP+IPv6+phys - DNS query
tx/rx - JSON+SSH+TCP+IPv6+phys - DNS update
where "phys" describes the equations' dependence on the "physical" layer's
frame overhead and MTU
notable "phys" layers:
Ethernet -- ad-hoc wifi, infra wifi, 802.11s mesh, switch, hub
TLS+UDP+IPv4 -- openvpn
L2TP+IPsec+IPv4 -- raccoon, isakmpd, openswan, etc.
UDP+IPv4 -- teredo

== Debugging Techniques ==

Start recording a typescript so that we can see what you did.

TESTDIR=`pwd`/testing
mkdir -p $TESTDIR && cd TESTDIR
script
ulimit -c unlimited

Check that you've got the right DNS name for the person you want to talk to.

NAME=the.right.person
echo $NAME > peer

Dump your addresses, routes, and perhaps your open connections.

hostname --fqdn | tee host
ip addr show | tee addrs
ip route show | tee ipv4_routes
ip -6 route show | tee ipv6_routes
netstat -anp | tee conns

If you have wireless devices,

iwconfig | tee iwconfig
iwlist scan | tee iwlist_scan

Fire up tcpdump:

tcpdump -w packets -s0 &

Resolve that name to addresses. Check that the addresses seem sane.

dnshash lookup $NAME | tee peer_addrs_dnshash
dig $NAME | tee peer_addrs_dig

See who's answering broadcasts:

ping6 -I $IFACE ff02::1

Route to the addresses:

ping6 -I $IFACE $ADDR | tee ping
traceroute6 $ADDR | tee traceroute
tracepath6 $ADDR | tee tracepath

Connect to the address:

nc6 $ADDR $PORT
# echo "SSH-2.0-Hi" | nc6 $ADDR 22
# printf "GET / HTTP/1.0\r\n\r\n" | nc6 $ADDR 80
# ssh $ADDR
# curl -I http://$ADDR/
# ...

Conduct a bandwidth test:

iperf -c -V $ADDR

Collect logs from your application and send them to developers:

kill -SIGINT %1
cd ..
tar c $TESTDIR | lzma -c > logs.tar.lzma

== Self-Test Algorithm ==

As we gain experience with the system, we'll write a decision-list here which inspects the output of the diagnostic procedures listed above and which identifies the proximate cause of networking failure based on those results.

== Advice for Coders ==

There are two critical changes that you'll need to make to your design in order to really make it sing.

First, you'll want to add some mechanism for your users to type in hostnames that they want you to connect to. This lets them do all sorts of cool stuff like:

* copy-and-paste links from websites or cerebro
* type in names from a physical display like a blackboard or a handout,

Second, you'll want to be prepared to re-resolve names in order to get fresh addresses each time your connectivity changes. For the time being, you should do this by calling libc's <tt>[http://linux.die.net/man/3/getaddrinfo getaddrinfo()]</tt> function.

Third, go check out [http://tools.ietf.org/html/rfc4960 SCTP] ([http://en.wikipedia.org/wiki/Stream_Control_Transmission_Protocol wikipedia], [http://linux.die.net/man/7/sctp man page]). It's support for multi-homing, multi-streaming with and without ordering guarantees, and for updating the addresses you're using to talk to your peer on the fly seem particularly serendipitous.

== Advice for Deployers ==

Ask your ISPs to provide IPv6 prefixes or tunnel endpoints. After all -- if none of their customers ask, then what incentive will they ever have to upgrade?

Failing that, see if you (or a local university?) can afford a public IPv4 address -- even if it's dynamic. If so, you can be many sorts of tunnel endpoint.

Regardless, if you manage to get a globally reachable IPv6 address by any means, then you can provide a DNS server for your kids and it can direct them to one another and to any other services that you feel like pointing them at.

== Security ==


# Spoofing, Integrity, Confidentiality. See [[communications security]] and [http://passpet.org/ petnames] for some background. A very rough road along which something reasonable ''might'' lie:
#* Use physical introduction to CNAME <tt>cscott.michael.laptop.org</tt> to <tt>''&lt;key&gt;''.cscott.laptop.org</tt>.
#* Then, my [http://dnscurve.org dnscurve]-compatible DNS resolver will refuse to give me addresses unless the nameserver I contact for cscott proves knowledge of cscott's private key.
#* Then I have a nice basis with which to configure IPsec security associations.
# System Integrity
# DoS

== Future Work ==

* Per-host networks and per-app IPs and names.
* Sample code.



= Experiments =

== VPN server configuration ==

In this experiment, we're going to configure openvpn and radvd on a machine (teach.laptop.org) with a public IPv4 address. Truthfully, this combination is probably overkill, but the task of constructing it seemed like it might to offer valuable experience, e.g. for someone who wants to bridge multiple kinds of tunnel endpoint or who wants to load-balance lots of clients between a couple of endpoints.

# Install our VPN and route advertisement software.
apt-get install openvpn radvd
# yum -y install openvpn radvd
# add nobody:nobody
groupadd nobody
useradd nobody
usermod -a -G nobody nobody
# Configure radvd
cat > /etc/radvd.conf <<EOF
interface tap0
{
AdvSendAdvert on;
MinRtrAdvInterval 30;
MaxRtrAdvInterval 100;
prefix 1234:db8:1:0::/64
{
AdvOnLink on;
};
};
EOF
# enable forwarding everywhere
sysctl -w net.ipv6.conf.all.forwarding=1
# flush the forwarding table
ip6tables -F FORWARD
# really, I /want/ a multi-user version of
# openvpn --dev tap --user nobody --group nobody --verb 6
# but I'm not sure how to get that. instead, I'll use some fake keys and no ciphers.
mkdir -P keys && cd keys
wget http://teach.laptop.org/~mstone/sample-keys.tar.bz2
tar xf sample-keys.tar.bz2 && cd sample-keys
# create a multi-user tunnel
openvpn --mode server --client-to-client --dev tap --user nobody --group nobody --verb 6 --opt-verify --tls-server --client-connect /bin/true --auth-user-pass-optional --duplicate-cn --auth-user-pass-verify /bin/true via-env --dh ./dh1024.pem --ca ./ca.crt --cert client.crt --key client.key --script-security 3 --auth none --cipher none &
# at any rate, bring up the interface so that we get link-local addresses
ip link set tap0 up
# turn on the route advertisement daemon
radvd -d 5 -m stderr &

== VPN client configuration ==

The purpose of this experiment was to test the VPN configuration described immediately above.

# install vpn client
apt-get install openvpn
# yum -y install openvpn
# add nobody:nobody
groupadd nobody
useradd nobody
usermod -a -G nobody nobody
# download fake keys.
mkdir -P keys && cd keys
wget http://teach.laptop.org/~mstone/sample-keys.tar.bz2
tar xf sample-keys.tar.bz2 && cd sample-keys
# connect to the vpn
openvpn --user nobody --group nobody --dev tap --remote teach.laptop.org --tls-client --ca ca.crt --cert ./client.crt --key client.key --auth none --cipher none &
# bring up the interface
ip link set tap0 up
# find other people
ping6 -I tap0 ff02::1
# if using dnshash, attach
dnshash attach <your>.<domain>.<name>
# ... test, as described above ...

= Credits =

* {{credit|[[Profiles/mstone|Michael Stone]]|none|writing}}
* {{credit|[[Profiles/cscott|C. Scott Ananian]]|OLPC|architecture,teaching}}
* {{credit|[[Profiles/wad|John Watlington]]|OLPC|architecture}}
* {{credit|[[Profiles/robot101|Robert McQueen]]|Collabora|prior work,critique}}
* {{credit|[[Profiles/daf|Dafydd Harries]]|Collabora|prior work,critique}}
* {{credit|[[Profiles/ypod|Polychronis Ypodimatopolous]]|MIT|prior work,critique}}
* {{credit|[[Profiles/csetlow|Cortland Setlow]]|Tower Research Capital|testing}}
* {{credit|[[Profiles/aa|Andres Ambrois]]||design,testing}}
* {{credit|[[Profiles/tabitha|Tabitha Roder]]||testing}}

Latest revision as of 04:15, 15 January 2010

Last updated: Michael Stone 04:15, 15 January 2010 (UTC) | paper version

Sugar's desired realtime collaboration experience can only be provided atop a robust and efficient network stack designed to accommodate automated diagnosis and standardized workarounds -- anything less only wastes students' and teachers' time and patience, contrary to our human interface guidelines.

This unfinished essay summarizes an attempt to work out a simple way to realize this sort of network experience, with existing software and hardware, while also demonstrating the sort of thinking which might help other parts of the system achieve the same standard of quality.

Quick links: the Paper : (finished/unfinished sections)

Personal goals...

  1. "I want to use familiar tools in my activities, -- like Twisted, curl, ssh, rsync, and email -- both under a tree, in a walled garden, and out on the public Internet, without modification or wrappers."
  2. "I want a design that has 20% fewer ways to fail, and that offers manual overrides for the failure modes that remain."
  3. "I want to chop 2-3 levels from the current collaboration stack's 6-level 'fast-path'."
  4. "I want to collaborate with people who only have web browsers -- they outnumber people with Jabber clients by millions."

Finally, to help out, please improve my writing, experiment with my ideas, and share this work with your friends!

Subpages